Impact of well intake systems on bacterial, algae and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

<u>Abdullah Dehwah</u>^a, Samir Al-Mashharawi^a, Nizar Kammourie^b, Thomas M. Missimer^a

^aKing Abdullah University of Science and Technology
^bSAWACO, KSA

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

13, May, 2014

Seawater Intake Issues

Significance of intake systems:

- Control feed water quality
- Controls the design, operation and performance of downstream process components
- Influences the use of chemicals in the treatment processes
- Influences the environmental impacts (impingement and entrainment)
- Influences the energy consumption of the pretreatment processes
- Influences overall cost of desalination

Seawater Intake Types

• Open-ocean intake

Positives:

- Supplies unlimited quantities of raw seawater
- Well-known design and construction methods
- Independent of coastal and ocean floor geology

Negatives:

- Environmental impacts associated with the intake operations (e.g. entrainment and impingement)
- Use of chemicals
- Fluctuation in the raw water quality based on the seasonal changes, special events (algal blooms)
- Extensive pretreatment processes required

Subsurface Intakes

• Positives:

- Acts as part of the pretreatment system
- Provides better quality feed water for desalination
- Reduces environmental impacts
- Reduces the need for chemicals
- Reduces the facility footprint
- Operates during algal blooms (red tide) or oil spill events
- Negatives:
 - Dependent on the local geological conditions (Limited capacity)
 - Not enough documentation available about the operation of these type of intakes

Pre-treatment Requirements for the Different Intakes

The Need for This Research

- The intake system can play a significant role in improving the feed water quality and ultimately influences the performance of downstream components of desalination processes.
- It is necessary to understand the role of subsurface intake (well system) in minimizing potential risk of membrane bio-fouling.

Studied Site

Geological conditions: -Coastal sabkha environment

- (hyper-saline) conditions.
- -Wells were constructed along the shoreline.
- (limited yield, TDS ≈90,000mg/L)
- Unlithified carbonate sediments and limestone (seabed).

Location of the studied SWRO facility

Offshore Well System

Offshore wells intake used to supply feed water to the studied SWRO facility

- A series of 10 wells were drilled on an artificial-fill peninsula constructed from the shoreline into the nearshore area of the Red sea
- Well Depths: 40-50 m
- Distance: 20m between each well, furthest well 800m from the desalination plant
- Pretreatment stages: Microfiltration(0.02 μm), Cartridge filter (5 μm)

Measurements (Natural Organic Matter)

Transparent Exopolymer Particles (TEP):

- One of the main compounds leading to membrane biofouling
- It has sticky nature and high surface reactivity
- Composed of acidic polysaccharides
- Two types of TEP:
 - ✓ Particulate TEP (size > 0.4 μ m)
 - ✓ Colloidal TEP (0.40 μ m < size> 0.05 μ m)

TEP Measurement (Passow and Alldredge Method)

Measurments(continued..)

Bacteria

Natural organic fractions measurement :

• Liquid Chromatography-Organic Carbon Detection (LC-OCD)

Low molecular weight (LMW) acids

Microorganism quantification:

Flow cytometer was used for algae and bacterial counts

• Cell counting based on particle relative size and fluorescence through cell excitation

Physical parameters:

Turbidity

Total dissolved solids (TDS)

BD FACSVerse Model

рН	

Physical Parameters (Results)

Parameter	Seawater	Well #1	Well #3	Well #6	Well #10
TDS [g/l]	48.4	50.5	49.4	54.5	49.5
Turbidity [NTU]	3.67	0.55	1.58	1.07	1.09
Conductivity [ms/cm]	61.4	66.6	59.8	62.3	59.8
РН	8.24	7.49	7.7	7.63	7.71

May,13, 2014

Bacterial and Algae Quantification

Bacterial concentration

Algae concentration (cells/ml)

Sampling Point	Cyanobacteria	Prochlorococcus	Pico/nanoplankton	
Seawater	1507	140	30	
Well #1	<5	<5	<5	
Well #3	<5	<5	<5	
Well #6	<5	<5	<5	≈100 % rem
Well #10	<5	<5	<5	•••••••

Natural Organic Matter

Total organic carbon

May,13, 2014

Transparent Exopolymer Particles (TEP)

Particulate TEP (>0.4 µm)

Conclusions

- An uniquely-designed offshore well intake system is effective at removing TEP (75%), bacteria (97%) & algae (100%) and natural organic compounds (up to 97% of biopolymers)
- Offshore wells help to overcome the geological condition of hypersaline environments occurring at the shoreline (sabkhas)
- The high quality feed water produced from the offshore well system demonstrates that less pretreatment will be needed, reduces the frequency of membrane cleanings and reduces operating costs.

Acknowledgments

- Water Desalination and Reuse center (for the use of analytical equipment)
- Khaled Bin Bandar (for field and lab support)
- SAWACO company team and Eng. Najm El-Jafery for access to the facilities and on- site support

Abdullah Hamoud Dehwah - KAUST

Abdullah.dahwah@kaust.edu.sa